Discover great EU-funded Innovations
INNOVATION
Non-catalytic dry reforming of CO 2 and bio-oil for syngas production
SHARE:
Market Maturity: Exploring
These are innovations that are actively exploring value creation opportunities. Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as addressing the needs of existing markets and existing customers. Learn more
Women-led innovation
A woman had a leadership role in developing this innovation in at least one of the Key Innovator organisations listed below.
Go to Market needs
Needs that, if addressed, can increase the chances this innovation gets to (or closer to) the market incude:
  • Prepare for Market entry
  • Secure capital
  • Scale-up market opportunities
Location of Key Innovators developing this innovation
Key Innovators
UN Sustainable Development Goals(SDG)
This innovation contributes to the following SDG(s)
SUSTAINABLE DEVELOPMENT GOAL 7
Ensure access to affordable, reliable, sustainable and modern energy for all

The UN explains: "Energy is central to nearly every major challenge and opportunity the world faces today. Be it for jobs, security, climate change, food production or increasing incomes, access to energy for all is essential.

Transitioning the global economy towards clean and sustainable sources of energy is one of our greatest challenges in the coming decades. Sustainable energy is an opportunity – it transforms lives, economies and the planet."

The EU-funded Research Project
This innovation was developed under the Horizon Europe project MINICOR with an end date of 31/10/2028
  • Read more about this project on CORDIS
Description of Project MINICOR
Reduced net emissions of carbon dioxide (CO2) are necessary to achieve the goals of limited global warming and ensure a sustainable future for our society. This proposal presents a versatile and scalable process for management and valorization of CO2 and nitrogen. Starting from biomass residues, a first step in the proposed scheme involves a pyrolysis process that results in the release pyrolysis oil of rather low heating value. However, combustion under very diluted conditions using a Moderate or Intense Low-oxygen Dilution (MILD) concept allows for efficient and low-pollutant energy conversion. The MILD combustion process is utilized for a CO2 reforming step resulting in generation of syngas. The pyrolysis and the reforming are supplied by heat from the MILD combustion that can be further supplemented by intermittent energy sources such as solar and wind power. The residual char product from the pyrolysis step can be upgraded by activation with CO2 and utilized for adsorption of nitrogen from biomass. The nitrogen-enriched char can then be used for soil carbonization and nitrification. The concept thus addresses the objective of CO2 and nitrogen management with efficient renewable resource deployment. It also adopts a circular approach as it can employ biomass residues as raw material and combines the production of heat and syngas with that of porous biochar materials for several possible utilizations. The process can be adapted by multiple parameters and optimized for different conditions and purposes, and rather than optimizing on a single product or aspect, the concept brings a holistic view. The development of the process will include experimental research with state-of-the-art analysis methods, based on laser diagnostics and neutron scattering, combined with numerical modeling of the thermochemical processes. Life-cycle analysis will be made during the project to guide process development and assess its impact.

Innnovation Radar's analysis of this innovation is based on data collected on 11/11/2024.
The unique id of this innovation in the European Commission's IT systems is: 131522