Discover great EU-funded Innovations
INNOVATION
Improved Pt/C, hydrogen evolution, cathode electrocatalysts for PEM water electrolysis
SHARE:
Market Maturity: Exploring
These are innovations that are actively exploring value creation opportunities. Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as addressing the needs of existing markets and existing customers. Learn more
Women-led innovation
A woman had a leadership role in developing this innovation in at least one of the Key Innovator organisations listed below.
Go to Market needs
Needs that, if addressed, can increase the chances this innovation gets to (or closer to) the market incude:
  • Scale-up market opportunities
Location of Key Innovators developing this innovation
Key Innovators
UN Sustainable Development Goals(SDG)
This innovation contributes to the following SDG(s)
SUSTAINABLE DEVELOPMENT GOAL 7
Ensure access to affordable, reliable, sustainable and modern energy for all

The UN explains: "Energy is central to nearly every major challenge and opportunity the world faces today. Be it for jobs, security, climate change, food production or increasing incomes, access to energy for all is essential.

Transitioning the global economy towards clean and sustainable sources of energy is one of our greatest challenges in the coming decades. Sustainable energy is an opportunity – it transforms lives, economies and the planet."

SUSTAINABLE DEVELOPMENT GOAL 9
Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation

The UN explains: "Investments in infrastructure – transport, irrigation, energy and information and communication technology – are crucial to achieving sustainable development and empowering communities in many countries. It has long been recognized that growth in productivity and incomes, and improvements in health and education outcomes require investment in infrastructure."

The EU-funded Research Project
This innovation was developed under the Horizon Europe project ADVANCEPEM with an end date of 31/01/2026
  • Read more about this project on CORDIS
Description of Project ADVANCEPEM
Direct production of highly pressurised hydrogen from electrolytic water splitting can allow saving relevant amounts of energy compared to down-stream gas compression. The aim of this project is to develop a novel polymer electrolyte membrane (PEM) electrolyser able to produce hydrogen at very high pressure (200 bar) thus reducing the post-compression energy consumption. Another goal is to develop a cost-effective technology allowing to achieve large-scale application of PEM electrolysers. A significant reduction of capital costs is achieved by critical raw materials minimisation, developing cheap coated bipolar plates and operating the electrolyser at a high production rate while assuring high efficiency (about 80% vs. HHV) and safe operation. ADVANCEPEM aims at developing a set of breakthrough solutions at materials, stack and system levels to increase hydrogen pressure to 200 bar and current density to 5 A cm-2 for the base load, while keeping the nominal energy consumption <50 kWh/kg H2. Reinforced Aquivion® polymer membranes with enhanced conductivity, high glass transition temperature and increased crystallinity, able to withstand high differential pressures, are developed for this application. The approach is to operate the innovative membrane at high temperature 90-120 °C under high pressure to allow increasing energy efficiency. To mitigate hydrogen permeation to the anode and related safety issues, efficient recombination catalysts are integrated both in the membrane and anode structure. The new technology is validated by demonstrating a high-pressure electrolyser of 50 kW nominal capacity with a production rate of about 24 kg H2/day in an industrial environment. The project will deliver a techno-economic analysis to assess reduction of the electrolyser CAPEX and OPEX. The consortium comprises an electrolyser manufacturer, membrane and catalyst supplier, an MEA developer and an end-user for demonstrating the system.

Innnovation Radar's analysis of this innovation is based on data collected on 08/11/2024.
The unique id of this innovation in the European Commission's IT systems is: 130263