Discover great EU-funded Innovations
INNOVATION
Insoluble PIMs (Fillers) to enhance the CO2 permeability and selectivity towards N2 in mixed matrix membranes (MMMs)
SHARE:
Market Maturity: Exploring
These are innovations that are actively exploring value creation opportunities. Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as having a Moderate” level of Market Creation Potential. Only innovations that are showing multiple signals of market creation potential are assigned a value under this indicator system. Learn more
Women-led innovation
A woman had a leadership role in developing this innovation in at least one of the Key Innovator organisations listed below.
Location of Key Innovators developing this innovation
Key Innovators
UN Sustainable Development Goals(SDG)
This innovation contributes to the following SDG(s)
SUSTAINABLE DEVELOPMENT GOAL 7
Ensure access to affordable, reliable, sustainable and modern energy for all

The UN explains: "Energy is central to nearly every major challenge and opportunity the world faces today. Be it for jobs, security, climate change, food production or increasing incomes, access to energy for all is essential.

Transitioning the global economy towards clean and sustainable sources of energy is one of our greatest challenges in the coming decades. Sustainable energy is an opportunity – it transforms lives, economies and the planet."

SUSTAINABLE DEVELOPMENT GOAL 13
Take urgent action to combat climate change and its impacts

The UN explains: "Affordable, scalable solutions are now available to enable countries to leapfrog to cleaner, more resilient economies. The pace of change is quickening as more people are turning to renewable energy and a range of other measures that will reduce emissions and increase adaptation efforts."

The EU-funded Research Project
This innovation was developed under the Horizon Europe project DAM4CO2 with an end date of 31/10/2026
  • Read more about this project on CORDIS
Description of Project DAM4CO2
The exploitation of fossil fuels brought our ecosystem on the edge of catastrophic changes. Mankind’s current challenge is to reverse the increase of greenhouse gases emissions to mitigate the serious consequences on the global climate. In this scenario, the transition of modern society to a more sustainable and circular economy must be accelerated. One of the key pillars of this transition is the implementation of a sustainable CO2 cycle, based on net-zero emissions Carbon Capture and Utilization processes. Membrane-based technologies could play a pivotal role to bring this vision closer to reality. Indeed, thanks to their high efficiency, scalability, easy operability, they are candidates for the efficient capture and use of CO2. The goal of DAM4CO2 is to develop a novel membrane technology for the simultaneous CO2 separation and its photocatalytic conversion to C4+ molecules, as renewable fuels. DAM4CO2 will overcome the conventional membrane technologies by developing double active membranes (DAMs) with a durable and highly selective gas separation layer and a photocatalytic layer able to simultaneously combine in one pot reverse water gas shift (RWGS) and Fisher-Tropsch synthesis (FTS) to obtain C4+ molecules. The project will deliver a prototype, designed using the design-build-test-learn approach, for a proof-of-concept validation in lab-conditions. Close attention will be paid to the use of non-critical raw materials at every stage of the process, and the carbon-neutrality of the entire process will be certified by a full life cycle analysis. DAM4CO2 brings together the complementary expertise of our team in the areas of organic, inorganic and physical chemistry, materials science, and chemical engineering for the development, synthesis, and characterization of the starting materials, and for the design, construction, and application of membrane modules. DAM4CO2 will implement a sustainable, cost and energy effective net zero carbon CO2 cycle.

Innnovation Radar's analysis of this innovation is based on data collected on 28/11/2024.
The unique id of this innovation in the European Commission's IT systems is: 130381