Discover great EU-funded Innovations
INNOVATION
EpidBioBERT - Enriching Epidemiological Thematic Features For Disease Surveillance Corpora Classification
SHARE:
Market Maturity: Exploring
These are innovations that are actively exploring value creation opportunities. Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as addressing the needs of existing markets and existing customers. Learn more
Women-led innovation
A woman had a leadership role in developing this innovation in at least one of the Key Innovator organisations listed below.
Go to Market needs
Needs that, if addressed, can increase the chances this innovation gets to (or closer to) the market incude:
  • Prepare for Market entry
  • Secure capital
Location of Key Innovators developing this innovation
Key Innovators
The EU-funded Research Project
This innovation was developed under the Horizon 2020 project MOOD with an end date of 31/12/2024
  • Read more about this project on CORDIS
Description of Project MOOD
The detection of infectious disease emergence relies on reporting cases, i.e. indicator-based surveillance (IBS). This method lacks sensitivity, due to non or delayed reporting of cases. In a changing environment due to climate change, animal and human mobility, population growth and urbanization, there is an increased risk of emergence of new and exotic pathogens, which may pass undetected with IBS. Hence, the need to detect signals of disease emergence using informal, multiple sources, i.e. event-based surveillance (EBS). The MOOD project aims at harness the data mining and analytical techniques to the big data originating from multiple sources to improve detection, monitoring, and assessment of emerging diseases in Europe. To this end, MOOD will establish a framework and visualisation platform allowing real-time analysis and interpretation of epidemiological and genetic data in combination with environmental and socio-economic covariates in an integrated inter-sectorial, interdisciplinary, One health approach: 1)Data mining methods for collecting and combining heterogeneous Big data, 2)A network of disease experts to define drivers of disease emergence, 3)Data analysis methods applied to the Big data to model disease emergence and spread, 4)Ready-to-use online platform destined to end users, i.e. national and international human and veterinary public health organizations, tailored to their needs, complimented with capacity building and network of disease experts to facilitate risk assessment of detected signals. MOOD output will be designed and developed with end users to assure their routine use during and beyond MOOD. They will be tested and fine-tuned on air-borne, vector-borne, water-borne model diseases, including anti-microbial resistance. Extensive consultations with end users, studies into the barriers to data sharing, dissemination and training activities and studies on the cost-effectiveness of MOOD output will support future sustainable user uptake

Innnovation Radar's analysis of this innovation is based on data collected on 11/03/2025.
The unique id of this innovation in the European Commission's IT systems is: 133635