Discover great EU-funded Innovations
INNOVATION
Table top hard Xray Microscope based on diffraction for virus imaging.
SHARE:
Market Maturity: Exploring
These are innovations that are actively exploring value creation opportunities. Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as addressing the needs of existing markets and existing customers. Learn more
Women-led innovation
A woman had a leadership role in developing this innovation in at least one of the Key Innovator organisations listed below.
Go to Market needs
Needs that, if addressed, can increase the chances this innovation gets to (or closer to) the market incude:
  • Prepare for Market entry
Location of Key Innovators developing this innovation
Key Innovators
UN Sustainable Development Goals(SDG)
This innovation contributes to the following SDG(s)
SUSTAINABLE DEVELOPMENT GOAL 3
Ensure healthy lives and promote well-being for all at all ages

The UN explains: "Significant strides have been made in increasing life expectancy and reducing some of the common killers responsible for child and maternal mortality.

Major progress has also been made on increasing access to clean water and sanitation, reducing malaria, tuberculosis, polio and the spread of HIV/AIDS.

However, many more efforts are needed to control a wide range of diseases and address many different persistent and emerging health issues."

The EU-funded Research Project
This innovation was developed under the Horizon Europe project NanoXCAN with an end date of 30/04/2026
  • Read more about this project on CORDIS
Description of Project NanoXCAN
Coronavirus disease (COVID-19) is an infectious disease that emerged in late 2019. By March 2020, the outbreak was declared a devastating pandemic and clearly illustrated the threat that viruses pose to our society. The characterization of viral structures and the identification of key proteins involved in each step of the cycle of infection are crucial to developing treatments. Yet imaging single viruses can only be performed in a few specialized centers in Europe, while every hospital could benefit from it.  NanoXCAN proposes to develop a tabletop virus imaging X-ray microscope, with foreseeable impact as revolutionary as the invention of super-resolved fluorescence microscopy, paving the way towards determination of structure and dynamics of matter to a large community. For this purpose, we will develop an original digital laser that delivers, on a daily operation, subwavelength focusing, reaching relativistic intensities at MHz repetition rates. This will be used to create a nano-source of hard X-rays from the Kalpha plasma emission of metallic nano-targets at an average power comparable to that of a synchrotron beamline.  We will capitalize on this high brilliance, high average power hard X-ray source to perform lensless nanoscale biomedical imaging based on recent findings in incoherent imaging and machine learning. All these ingredients will create a unique nanoscopy platform that our consortium will illustrate by imaging a single virus. In the future, our X-ray IDI microscope could help to study mechanisms involved in viral infection and antiviral design. X-rays have the advantage of performing in-situ non-destructive and non-invasive imaging over competing techniques. NanoXCAN will create a transformative positive effect on our economy and society by proposing this new technology for single virus imaging.

Innnovation Radar's analysis of this innovation is based on data collected on 02/12/2024.
The unique id of this innovation in the European Commission's IT systems is: 113420