Discover great EU-funded Innovations
INNOVATION
Revolutionary tank design for suspension-type flow batteries to optimize material flow and energy density
SHARE:
Market Maturity: Exploring
These are innovations that are actively exploring value creation opportunities. Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as addressing the needs of existing markets and existing customers. Learn more
Women-led innovation
A woman had a leadership role in developing this innovation in at least one of the Key Innovator organisations listed below.
Location of Key Innovators developing this innovation
Key Innovators
UN Sustainable Development Goals(SDG)
This innovation contributes to the following SDG(s)
SUSTAINABLE DEVELOPMENT GOAL 7
Ensure access to affordable, reliable, sustainable and modern energy for all

The UN explains: "Energy is central to nearly every major challenge and opportunity the world faces today. Be it for jobs, security, climate change, food production or increasing incomes, access to energy for all is essential.

Transitioning the global economy towards clean and sustainable sources of energy is one of our greatest challenges in the coming decades. Sustainable energy is an opportunity – it transforms lives, economies and the planet."

SUSTAINABLE DEVELOPMENT GOAL 13
Take urgent action to combat climate change and its impacts

The UN explains: "Affordable, scalable solutions are now available to enable countries to leapfrog to cleaner, more resilient economies. The pace of change is quickening as more people are turning to renewable energy and a range of other measures that will reduce emissions and increase adaptation efforts."

The EU-funded Research Project
This innovation was developed under the Horizon Europe project ReZilient with an end date of 30/09/2027
  • Read more about this project on CORDIS
Description of Project ReZilient
The penetration of renewable energies into the electric grid increases the demand for energy storage to ensure reliable power supply, grid resiliency, and cost reductions. Long-duration and long-term energy storage (LDES and LTES) can bridge the intermittency of renewable sources and reduce the risks incurred by diminished fossil-fuel baseload generation. Electrochemical energy storage (EES), or Li-ion batteries (LIBs), are considered for short-duration energy storage (4-6 hours). When talking about seasonal storage, hydrogen storage is usually the preferable option. The goal of ReZilient is to fill the gap between short-term EES and long-term hydrogen storage by developing and demonstrating at lab-scale (0.5-1.5kW/6kWh) a completely new Zn-air flow battery technology. The estimated capital cost for large-scale deployment is approximately 80 €/kWh, with a levelized-cost-of-storage <0.5 €/kWh/cycle (based on 100 kW/1000 kWh system, 1 week discharge duration). A disruptive redox-mediated strategy for enhanced charge transfer processes is employed with the goal of confining the Zn/Zn2+ redox reaction in the negative reservoir (filled with a semi-solid zinc solution) and eliminating the electroplating process inside the cell (no dendrites) to improve battery lifetime. This will allow discharge times beyond days, contrary to conventional zinc-based batteries where long discharge is hampered by the formation of a cm-thick zinc anode. If successful, the technology has disruptive potential in terms of both extremely low levelized-cost-of-storage, extended storage time, recyclability, and use of non-critical-raw-materials. A pilot concept design of the cell will be conceived after demonstration of the technology. The output of this design will lead to an update of the business case of the distribution network operators and potential customers

Innnovation Radar's analysis of this innovation is based on data collected on 28/11/2024.
The unique id of this innovation in the European Commission's IT systems is: 130225