Discover great EU-funded Innovations
INNOVATION
Dynamic Spatio-Temporal Modulation of Light by Brillouin Scattering
SHARE:
Market Maturity: Exploring
These are innovations that are actively exploring value creation opportunities. Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as addressing the needs of existing markets and existing customers. Learn more
Women-led innovation
A woman had a leadership role in developing this innovation in at least one of the Key Innovator organisations listed below.
Go to Market needs
Needs that, if addressed, can increase the chances this innovation gets to (or closer to) the market incude:
  • Prepare for Market entry
  • Scale-up market opportunities
Location of Key Innovators developing this innovation
Key Innovators
The EU-funded Research Project
This innovation was developed under the Horizon Europe project Dynamo with an end date of 28/02/2026
  • Read more about this project on CORDIS
Description of Project Dynamo
Imaging technologies form the basis of a vast range of products and devices and improvements would have a huge impact both scientifically and commercially. We have identified a key bottleneck, how light is modulated in the imaging system, that we can unlock to achieve a new paradigm in imaging technologies. Spatial light modulators, and similar components, operate sequentially: the light beam is shaped in different patterns but the time interval between patterns is limited by the refresh rate of the device. We will remove this limitation, thereby creating a technological breakthrough; our advance will be to send all possible patterns of the device simultaneously, and encoded in a short nanosecond pulse, creating the concept of parallel beam shaping or dynamic spatio-temporal light modulation device. In Dynamo, we will shape optical beams in two spatial dimensions plus the temporal one. The equivalent refresh rate of the dynamic pixel will start at GHz, although we are confident it will become much higher by the end of the project. To give an idea of our ambition, we compare this improvement in the time to process images with the improvement in the clock frequency of computers: the first general-purpose electronic computer, the ENIAC, had a clock frequency of 100kHz in 1945. It was not until 2000 where AMD reached 1 GHz in their computers. Processing images is broadly similar to processing data so this is indicative of the fifty-year acceleration in the realm of imaging that we will achieve. Dynamo is an ambitious and integrated project that begins by studying the fundamentals of acoustic wave scattering and ends by developing ultra-fast imaging applications in optics. The success of this pathway requires the synergy of the disciplines of physical acoustics, photonics and imaging. The outcomes from this project offer to accelerate imaging technologies and place European science and industry at the forefront of the inventions and advances that will follow.

Innnovation Radar's analysis of this innovation is based on data collected on 25/11/2024.
The unique id of this innovation in the European Commission's IT systems is: 130082