Discover great EU-funded Innovations
INNOVATION
Multi-stage fuel injection system applied to Sequential burner concept for improved performance with hydrogen-based fuels
SHARE:
Market Maturity: Market Ready
These are innovations that are outperforming in innovation management and innovation readiness, and are considered to be "Ready for the market". Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as addressing the needs of existing markets and existing customers. Learn more
Women-led innovation
A woman had a leadership role in developing this innovation in at least one of the Key Innovator organisations listed below.
Go to Market needs
Needs that, if addressed, can increase the chances this innovation gets to (or closer to) the market incude:
  • Scale-up market opportunities
Location of Key Innovators developing this innovation
Key Innovators
UN Sustainable Development Goals(SDG)
This innovation contributes to the following SDG(s)
SUSTAINABLE DEVELOPMENT GOAL 7
Ensure access to affordable, reliable, sustainable and modern energy for all

The UN explains: "Energy is central to nearly every major challenge and opportunity the world faces today. Be it for jobs, security, climate change, food production or increasing incomes, access to energy for all is essential.

Transitioning the global economy towards clean and sustainable sources of energy is one of our greatest challenges in the coming decades. Sustainable energy is an opportunity – it transforms lives, economies and the planet."

The EU-funded Research Project
This innovation was developed under the Horizon Europe project FLEX4H2 with an end date of 31/12/2026
  • Read more about this project on CORDIS
Description of Project FLEX4H2
The project aims at moving technological frontiers for low-emission combustion of hydrogen to fuel modern gas turbines at high firing temperatures and pressures, beyond the latest state-of-the-art. This will be achieved whilst maintaining high engine performance, efficiency, fuel and load flexibility, without diluents. At the same time, all emission targets set by the Clean Hydrogen JU Strategic Research and Innovation Agenda (SRIA) will be met. The idea is based on a proprietary combustion technology, designated constant pressure sequential combustion (CPSC) already deployed into the GT36 H-class engine (760 MW in combined cycle). The CPSC concept, based on a unique longitudinally staged combustion system, yields the best fuel flexibility and has the greatest potential to achieve the project target of demonstrating stable and clean combustor operation with concentrations of hydrogen admixed with natural gas, up to 100%, at firing temperatures typical of modern H-Class engines. The new, improved combustor design will be fully retrofittable to existing gas turbines, thereby providing opportunities for refurbishing existing assets. The primary objective is to demonstrate the CPSC technology in engine relevant environment (TRL6) in three steps (70, 90 and 100 vol% H2). In this pursuit, a subset of specific performance data (KPIs) will be met within the project timeline and with the planned resources and allocated budget. The project uses state-of-the-art computational tools, analytical modelling, and diagnostic techniques to investigate static and dynamic flame stabilisation. Testing is performed at world-class laboratories in test campaigns at reduced scale and in full size (at atmospheric and pressurised conditions). In preparation for commercialisation, the project will also develop a roadmap towards deployment of the developed system into operation and demonstration into a power plant environment quantifying the valuable contributions to the EU Green Deal.

Innnovation Radar's analysis of this innovation is based on data collected on 08/10/2024.
The unique id of this innovation in the European Commission's IT systems is: 127463