Discover great EU-funded Innovations
INNOVATION
Real-Time high-content Super-Resolution Imaging of ES Cell States
SHARE:
Market Maturity: Exploring
These are innovations that are actively exploring value creation opportunities. Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as addressing the needs of existing markets and existing customers. Learn more
Go to Market needs
Needs that, if addressed, can increase the chances this innovation gets to (or closer to) the market incude:
  • Prepare for Market entry
  • Secure capital
  • Scale-up market opportunities
Location of Key Innovators developing this innovation
Key Innovators
The EU-funded Research Project
This innovation was developed under the Horizon Europe project RT-SuperES with an end date of 30/06/2027
  • Read more about this project on CORDIS
Description of Project RT-SuperES
The development of super-resolution (SR) microscopy in recent years has revolutionized cell biology, breaking the diffraction limit of light microscopy by order of magnitude. However, SR is currently incompatible with high-content imaging. RT-SuperES will provide a groundbreaking and affordable technology with automated SR capabilities beyond the state-of-the-art. To this end, we will generate a library of endogenously-labelled SNAP-tag fusion proteins in mouse embryonic stem cells (ESCs), and deploy a real-time decision-making module, which will continuously monitor our SNAP-tagged cells using fast fluorescence imaging, and, once a change is detected, will fix the desired cells, and switch to SR mode. By bringing together seven world-leading experts from four different countries, combining basic and applied research and industry, we propose several firsts: a) The first endogenously-labelled clone library of SNAP-tag fusion proteins; b) Utilize machine learning (ML) for real-time automated decision making, autonomously switching from fast conventional to SR imaging; c) Combine high content with SR imaging; d) Integrate novel, cutting-edge technologies, namely SR Radial Fluctuations (SRRF), NanoJ-Fluidics, Single Molecule Localization Microscopy (SMLM) and Structured Illumination Microscopy (SIM); e) Collect large scale imaging datasets of cell states in ESCs, and f) Provide cell-cycle stage-dependent nanoscale localization of selected nuclear and chromatin proteins (e.g. H3.3), during early ESC differentiation. RT-SuperES will provide the scientific community with the first-of-its-kind commercial real-time SR-highcontent imaging system, and the first library of endogenously SNAP-tagged ESC clones, which are ideal, among many other things, for SR imaging.

Innnovation Radar's analysis of this innovation is based on data collected on 05/09/2024.
The unique id of this innovation in the European Commission's IT systems is: 126040