Discover great EU-funded Innovations
INNOVATION
Open-source software (CADET) for designing and optimizing production processes in biotechnology
SHARE:
Market Maturity: Exploring
These are innovations that are actively exploring value creation opportunities. Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as having a Noteworthy” level of Market Creation Potential. Only innovations that are showing multiple signals of market creation potential are assigned a value under this indicator system. Learn more
Go to Market needs
Needs that, if addressed, can increase the chances this innovation gets to (or closer to) the market incude:
  • Scale-up market opportunities
Location of Key Innovators developing this innovation
Key Innovators
UN Sustainable Development Goals(SDG)
This innovation contributes to the following SDG(s)
SUSTAINABLE DEVELOPMENT GOAL 3
Ensure healthy lives and promote well-being for all at all ages

The UN explains: "Significant strides have been made in increasing life expectancy and reducing some of the common killers responsible for child and maternal mortality.

Major progress has also been made on increasing access to clean water and sanitation, reducing malaria, tuberculosis, polio and the spread of HIV/AIDS.

However, many more efforts are needed to control a wide range of diseases and address many different persistent and emerging health issues."

The EU-funded Research Project
This innovation was developed under the Horizon 2020 project Inno4Vac with an end date of 28/02/2027
  • Read more about this project on CORDIS
Description of Project Inno4Vac
Inno4Vac proposes an ambitious programme that will harness the latest advances in immunology, disease modelling, and modelling for tackling persistent scientific bottlenecks in vaccine development and for de-risking and accelerating this process. To reach this aim the project is divided into four interlinked subtopics. In Subtopic 1, artificial intelligence in combination with big data analysis and computational modelling will be used to build an open-access and cloud-based platform for in silico vaccine efficacy assessment and development. Subtopic 2 will develop new and improved controlled human infection models (CHIM) against influenza, RSV and C. difficile that will enable early vaccine efficacy evaluation. Subtopic 3 will contribute to the development of cell-based human in vitro 3D models that resemble the in vivo situation of an infection at the mucosa and more reliably predict immune protection. These models will be combined with the development of related functional immune assays for clinically relevant (surrogate) endpoints. Finally, Subtopic 4 will develop a modular one-stop computational platform for in silico modelling of vaccine bio-manufacturing and stability testing. In parallel to the scientific-technical work, the partners will develop strategies and roadmaps for positioning the newly developed models in the regulatory framework and integrating them into pharmaceutical vaccine development. The overall workplan is underpinned by horizontal activities on coordination/management and dissemination/communication, including data management and future sustainability. To achieve these ambitious objectives, Inno4Vacc has assembled a multidisciplinary consortium from academic and research institutions, industries, regulatory bodies, and vaccine R&D alliances. This unique partnership brings together clinical, immunological, microbiological, systems biology, mathematical models, and regulatory expertise and includes world-leaders in each respective field.

Innnovation Radar's analysis of this innovation is based on data collected on 21/05/2024.
The unique id of this innovation in the European Commission's IT systems is: 121649