Discover great EU-funded Innovations
INNOVATION
Lead-free halide perovskite nanocrystals stable in water for photoelectrochemical/photocatalytic applications
SHARE:
Market Maturity: Exploring
These are innovations that are actively exploring value creation opportunities. Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as addressing the needs of existing markets and existing customers. Learn more
Go to Market needs
Needs that, if addressed, can increase the chances this innovation gets to (or closer to) the market incude:
  • Prepare for Market entry
Location of Key Innovators developing this innovation
Key Innovators
UN Sustainable Development Goals(SDG)
This innovation contributes to the following SDG(s)
SUSTAINABLE DEVELOPMENT GOAL 7
Ensure access to affordable, reliable, sustainable and modern energy for all

The UN explains: "Energy is central to nearly every major challenge and opportunity the world faces today. Be it for jobs, security, climate change, food production or increasing incomes, access to energy for all is essential.

Transitioning the global economy towards clean and sustainable sources of energy is one of our greatest challenges in the coming decades. Sustainable energy is an opportunity – it transforms lives, economies and the planet."

The EU-funded Research Project
This innovation was developed under the Horizon Europe project OHPERA with an end date of 31/03/2026
  • Read more about this project on CORDIS
Description of Project OHPERA
Photoelectrochemical (PEC) H2 generation, using water as proton and electron source, is considered the most impactful solar-driven processes to tackle the energy, environment, and climate crisis, providing a circular economy strategy to supply green energy vectors (H2) with zero carbon footprint. Aligning with this view, OHPERA will develop a proof-of-concept unbiased tandem PEC cell to simultaneously achieve efficient solar-driven H2 production at the cathode and high added-value chemicals from valorization of industrial waste (glycerol) at the anode, being sunlight the only energy input. Thus, OPHERA will demonstrate the viability of producing chemicals with economic benefits starting from industrial waste, using a renewable source of energy. For this purpose, OPHERA will integrate highly efficient and stable photoelectrodes based on halide lead-free perovskite nanocrystals (PNCs) and tailored catalytic/passivation layers, avoiding the use of critical raw materials (CRM), in a proof-of-concept eco-design PEC device. Theoretical modelling both at an atomistic and device scales will assist the materials development and mechanistic understanding of the processes, and all materials and components will be integrated in a proof-of-concept device, targeting standalone operation at 10 mA·cm-2 for 100 hours, 90% Faradaic efficiency to H2, and including a clearly defined roadmap for upscaling and exploitation. Therefore, OPHERA will offer a dual process to produce green H2 concomitant to the treatment of industrial waste generating added-value chemicals with high economic and industrial interest, thus offering a competitive LCOH.

Innnovation Radar's analysis of this innovation is based on data collected on 25/06/2024.
The unique id of this innovation in the European Commission's IT systems is: 115977