Discover great EU-funded Innovations
INNOVATION
Ferroelectric memory elements postprocessed on top of CMOS in-sensor computing
SHARE:
Market Maturity: Exploring
These are innovations that are actively exploring value creation opportunities. Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as addressing the needs of existing markets and existing customers. Learn more
Go to Market needs
Needs that, if addressed, can increase the chances this innovation gets to (or closer to) the market incude:
  • Scale-up market opportunities
Location of Key Innovators developing this innovation
Key Innovators
UN Sustainable Development Goals(SDG)
This innovation contributes to the following SDG(s)
SUSTAINABLE DEVELOPMENT GOAL 9
Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation

The UN explains: "Investments in infrastructure – transport, irrigation, energy and information and communication technology – are crucial to achieving sustainable development and empowering communities in many countries. It has long been recognized that growth in productivity and incomes, and improvements in health and education outcomes require investment in infrastructure."

The EU-funded Research Project
This innovation was developed under the Horizon 2020 project MISEL with an end date of 30/06/2025
  • Read more about this project on CORDIS
Description of Project MISEL
MISEL aims at bringing artificial intelligence to the edge computing (decisions made on-device) through a low-power bio-inspired vision system with multi-spectral sensing and in sensor spatio-temporal neuromorphic processing based on complex events. The science-to-technology breakthrough is the heterogeneous integration of a neuromorphic computing scheme featuring three different abstraction levels (cellular, cerebellar and cortex processors) with high-density memory arrays and adaptive photodetector technology for fast operation and energy efficiency. The context-aware, low power and distributed computation paradigm supported by MISEL is promising alternative to the current approach relying on massive-data transfers and large computational resources, e.g., workstations or cloud servers. This answers to the challenges and related scope presented in the Work Programme towards "more complex, brain mimicking low power systems" "exploiting a wider range of biological principles from the hardware level up" by introducing the human eye like adaptivity with cellular processor and the data fusion, learning, reasoning, and “conscious” decisions performed by the cortex. The stand-alone system fabricated in MISEL will be tested on timely and challenging applications such as distinguishing birds from drones through their spatio-temporal flying signature, and scene anomaly detection from a mobile platform. From the technology development and industrialization point of view, MISEL includes the whole value chain: materials research for back-end of line (BEOL) processing-compatible densely-packed ferroelectric non-volatile memories (FeRAMs) and intensity adaptive photodetectors, novel neuromorphic computing algorithms and circuit implementations, and system level benchmarking. This is all in line with the challenge and scope of "outperforming conventional SoA with relevant metric" and benchmarking "challenging end-to-end scenarios of use" for industrial adaptation.

Innnovation Radar's analysis of this innovation is based on data collected on 04/03/2024.
The unique id of this innovation in the European Commission's IT systems is: 119760