Discover great EU-funded Innovations
Excellent Science INNOVATION
Scalable, configurable & parallel Time to Digital Converters for multi-channel timing applications
SHARE:
Market Maturity: Exploring
These are innovations that are actively exploring value creation opportunities. Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as having a Moderate” level of Market Creation Potential. Only innovations that are showing multiple signals of market creation potential are assigned a value under this indicator system. Learn more
Women-led innovation
A woman had a leadership role in developing this innovation in at least one of the Key Innovator organisations listed below.
Go to Market needs
Needs that, if addressed, can increase the chances this innovation gets to (or closer to) the market incude:
  • Scale-up market opportunities
Location of Key Innovators developing this innovation
Key Innovators
UN Sustainable Development Goals(SDG)
This innovation contributes to the following SDG(s)
SUSTAINABLE DEVELOPMENT GOAL 9
Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation

The UN explains: "Investments in infrastructure – transport, irrigation, energy and information and communication technology – are crucial to achieving sustainable development and empowering communities in many countries. It has long been recognized that growth in productivity and incomes, and improvements in health and education outcomes require investment in infrastructure."

The EU-funded Research Project
This innovation was developed under the Horizon 2020 project FleX-RAY with an end date of 31/01/2024
  • Read more about this project on CORDIS
Description of Project FleX-RAY
X-ray imaging is a key component of applications ranging from medicine and food to security and industrial non-destructive testing (NDT). Current approaches to X-ray detection however are limited with respect to shape flexibility and material cost. Inherent inflexibility of the digital electronics and scintillating materials used both in charge integrating and particle counting detectors leads to inaccurate imaging of complex geometries due to geometric magnification. This is particularly problematic in industrial NDT where defects in complex shapes are easy to miss, and in medical applications where early detection of abnormalities can make the difference between life and death. In medical applications, the inability to resolve complex features within the human body is offset by higher radiation dosage, thereby increasing health risks. Moreover, current architectures require the hardware and electronic systems to be placed across the beam path. Thus, they need to be radiation-hardened sacrificing pixel density, greatly increasing the cost of manufacturing, limiting shelf life and making maintenance practically impossible. FleX-RAY completely redefines X-ray detectors by introducing an utterly novel design where the hardware and electronics for detection are placed outside of the beam path, greatly reducing material and manufacturing costs. Our architecture achieves unprecedented versatility as multiple grids of fibres can be stacked to enable finer resolutions as well as particle tracking capabilities. Finally, by leveraging fiber Bragg gratings, our detector’s shape can be interrogated in real-time removing the need to know the imaged geometry beforehand. Our project brings together cross-disciplinary expertise in materials, fibre optics, analogue and digital electronics and particle physics to produce the world’s first ultra-flexible, low-cost, self-shape reporting X-ray detector that will enable 10x higher resolution at half the price of current approaches.

Innnovation Radar's analysis of this innovation is based on data collected on 15/03/2024.
The unique id of this innovation in the European Commission's IT systems is: 103207