Discover great EU-funded Innovations
INNOVATION
Predictive pollinator application and breeding software
SHARE:
Market Maturity: Exploring
These are innovations that are actively exploring value creation opportunities. Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as addressing the needs of existing markets and existing customers. Learn more
Go to Market needs
Needs that, if addressed, can increase the chances this innovation gets to (or closer to) the market incude:
  • Prepare for Market entry
  • Secure capital
  • Scale-up market opportunities
Location of Key Innovators developing this innovation
Key Innovators
UN Sustainable Development Goals(SDG)
This innovation contributes to the following SDG(s)
SUSTAINABLE DEVELOPMENT GOAL 2
End hunger, achieve food security and improved nutrition and promote sustainable agriculture

The UN explains: "It is time to rethink how we grow, share and consume our food.

If done right, agriculture, forestry and fisheries can provide nutritious food for all and generate decent incomes, while supporting people-centred rural development and protecting the environment.

Right now, our soils, freshwater, oceans, forests and biodiversity are being rapidly degraded. Climate change is putting even more pressure on the resources we depend on, increasing risks associated with disasters such as droughts and floods. Many rural women and men can no longer make ends meet on their land, forcing them to migrate to cities in search of opportunities.

A profound change of the global food and agriculture system is needed if we are to nourish today’s 815 million hungry and the additional 2 billion people expected by 2050.

The food and agriculture sector offers key solutions for development, and is central for hunger and poverty eradication."

The EU-funded Research Project
This innovation was developed under the Horizon Europe project DARkWIN with an end date of 30/06/2026
  • Read more about this project on CORDIS
Description of Project DARkWIN
Food security is threatened by climate change, with heat and drought being the main stresses affecting crop physiology and ecosystem services, such as plant-pollinator interactions. Despite the increasing relevance of flowers in sensing the stress, phenotyping platforms aim at identifying genetic traits of resilience by assessing the physiological status of the plants, usually through remote sensing-assisted vegetative indexes, but find strong bottlenecks in quantifying flower traits and in accurate genotype-to-phenotype prediction. However, as the transport of photoassimilates from leaves (sources) to flowers (sinks) is reduced in low-resilient plants, flowers are better indicators than leaves of plant well-being. Indeed, the chemical composition of flowers changes in response to heat and drought, as it does the amount of pollen and nectar that flowers produce, which ultimately serve as food recourses for the pollinators. DARkWIN proposes to track and rank pollinators’ preferences for flowers of a tomato mapping population exposed to heat and drought as a measure of functional source-to-sink relationships. To achieve this goal, DARkWIN will develop a pollinator-assisted selection and phenotyping platform for automated quantification of Genotype x Pollinator x Environment interactions through a bumblebee geo-positioning system. Pollinator-assisted selection for agriculture will be validated by a multi-omics dataset of unprecedented dimensions in a mapping population of tomato, including floral metabolic, transcriptomic, and ionomic traits, as well as mapping candidate genes, linking floral traits, pollinator preferences, and plant resilience. Moreover, DARkWIN will deliver tomato F1 pre-commercial varieties based on the natural biological process of pollinatordriven selection under climate change conditions. This radical new approach can change the current paradigm of plant phenotyping and find new paths for crop breeding assisted by ecological decisions.

Innnovation Radar's analysis of this innovation is based on data collected on 08/02/2024.
The unique id of this innovation in the European Commission's IT systems is: 119206