Discover great EU-funded Innovations
Excellent Science INNOVATION
Blends for new OECT (organic electrochemical transistor) performance
SHARE:
Market Maturity: Exploring
These are innovations that are actively exploring value creation opportunities. Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as addressing the needs of existing markets and existing customers. Learn more
Women-led innovation
A woman had a leadership role in developing this innovation in at least one of the Key Innovator organisations listed below.
Location of Key Innovators developing this innovation
Key Innovators
UN Sustainable Development Goals(SDG)
This innovation contributes to the following SDG(s)
SUSTAINABLE DEVELOPMENT GOAL 3
Ensure healthy lives and promote well-being for all at all ages

The UN explains: "Significant strides have been made in increasing life expectancy and reducing some of the common killers responsible for child and maternal mortality.

Major progress has also been made on increasing access to clean water and sanitation, reducing malaria, tuberculosis, polio and the spread of HIV/AIDS.

However, many more efforts are needed to control a wide range of diseases and address many different persistent and emerging health issues."

The EU-funded Research Project
This innovation was developed under the Horizon 2020 project MITICS with an end date of 31/07/2025
  • Read more about this project on CORDIS
Description of Project MITICS
MITICS will interface living systems with modern microelectronics creating major breakthroughs notably in healthcare. We target alternative materials, advanced processing know-how and insights in device architectures to reach the following main twofold objective: Develop high-gain (> 15) and low-power complementary circuits based on Organic ElectroChemical Transistors (OECTs) to be used as amplifying transducers and design ultra-conformable OECT arrays that mitigate losses in signal quality (signal-to-noise ratio > 30dB higher than conventional electrodes), enabling less invasive Brain-Computer Interfaces (BCIs). To reach this overarching objective, we envision a radically-new science-enabled technology that rests on a completely novel material engineering approach combined with highly advanced characterization methods. We will take advantage of a unique molecular architecture strategy spatially separating ion- and electron-transport pathways to ensure volumetric ion injection and transport in order to optimize the uptake and release of ions in the transistor channel and to promote efficient, long-range, electronic charge transport so as to maximize the response of the transistors to very weak signals. In contrast to field-effect transistors, where charge flows through a thin interfacial region, the identifying characteristic of OECTs I s that polymer doping occurs over the entire volume of the channel, thereby allowing for large modulations in drain current at low-gate voltages. We will seek for organic material architectures maximizing the electronic mobility volumetric capacitance, develop high-gain and low-power complementary circuits based on printed OECTs, and use these as amplifying transducers in the context of Brain-Computer Interfaces (BCIs) that mitigate losses in signal quality due to the dura, the skull and the scalp, thereby enabling less-invasive BCIs.

Innnovation Radar's analysis of this innovation is based on data collected on 27/09/2023.
The unique id of this innovation in the European Commission's IT systems is: 105768