Discover great EU-funded Innovations
Excellent Science INNOVATION
Tuneable pulsed laser for applications in spectroscopy
Market Maturity: Exploring
These are innovations that are actively exploring value creation opportunities. Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as addressing the needs of existing markets and existing customers. Learn more
Women-led innovation
A woman had a leadership role in developing this innovation in at least one of the Key Innovator organisations listed below.
Go to Market needs
Needs that, if addressed, can increase the chances this innovation gets to (or closer to) the market incude:
  • Scale-up market opportunities
Location of Key Innovators developing this innovation
Key Innovators
UN Sustainable Development Goals(SDG)
This innovation contributes to the following SDG(s)
Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation

The UN explains: "Investments in infrastructure – transport, irrigation, energy and information and communication technology – are crucial to achieving sustainable development and empowering communities in many countries. It has long been recognized that growth in productivity and incomes, and improvements in health and education outcomes require investment in infrastructure."

The EU-funded Research Project
This innovation was developed under the Horizon 2020 project TopoLight with an end date of 28/02/2025
  • Read more about this project on CORDIS
Description of Project TopoLight
Liquid crystals (LC) are advanced materials known for their anisotropic optical properties allowing to control the polarisation of light and are used in various optical devices. Now the time has come to push the LC applications further by implementing them into novel polariton devices to control topological properties of light. TopoLight deals for the first time with non-linear effects in room temperature Bose-Einstein condensate (BEC) and topological states of light uncovering astonishing possibilities of external electrical control over spin-orbit interaction due to artificially engineered fields acting on photons. With a two main technological approaches: originating from solid-state physics and developing molecular control of LC devices, we aim to demonstrate novel systems of tunable topological emitters based on room temperature BEC substantial in topological photonics and information encoding. We will design, fabricate and investigate photonic structures to start an innovative integrated hybrid organic/liquid-crystal system for room temperature BEC research and applications. Our disruptive innovation is based on the idea of external electrical control over spin-orbit coupling due to artificially engineered fields acting on photons, which has never been realised in photonics. We will create topologically protected states of light: unidirectional flow robust against backscattering and vortex states carrying quantised angular momentum. We will utilise the strong non-linearities observed in organic microcavities and SOC in liquid-crystal cavities to the demonstrate single photon polarisation switches capable for ternary logic. Our OLC microcavities (MCs) platform will combine a strong emissivity with the ease of fabrication, low costs, and scalability and room temperature operation.

Innnovation Radar's analysis of this innovation is based on data collected on 19/10/2022.
The unique id of this innovation in the European Commission's IT systems is: 109980