Discover great EU-funded Innovations
Excellent Science INNOVATION
Generate highly specific protein scaffolds (ADDobodies) with high affinity against snake venom components
Market Maturity: Tech Ready
These are innovations that are progressing on technology development process (e.g. pilots, prototypes, demonstration). Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as addressing the needs of existing markets and existing customers. Learn more
Women-led innovation
A woman had a leadership role in developing this innovation in at least one of the Key Innovator organisations listed below.
Go to Market needs
Needs that, if addressed, can increase the chances this innovation gets to (or closer to) the market incude:
  • Prepare for Market entry
  • Secure capital
  • Scale-up market opportunities
Location of Key Innovators developing this innovation
Key Innovators
UN Sustainable Development Goals(SDG)
This innovation contributes to the following SDG(s)
Ensure healthy lives and promote well-being for all at all ages

The UN explains: "Significant strides have been made in increasing life expectancy and reducing some of the common killers responsible for child and maternal mortality.

Major progress has also been made on increasing access to clean water and sanitation, reducing malaria, tuberculosis, polio and the spread of HIV/AIDS.

However, many more efforts are needed to control a wide range of diseases and address many different persistent and emerging health issues."

The EU-funded Research Project
This innovation was developed under the Horizon 2020 project ADDovenom with an end date of 30/09/2024
  • Read more about this project on CORDIS
Description of Project ADDovenom
ADDovenom initiates a major multidisciplinary effort to achieve a timely step-change in snakebite therapy, by creating an innovative platform with transformative potential for antivenom generation to save countless lives. ADDovenom exploits a disruptive new, protein-based nanoscaffold we developed, the ADDomer - a megadalton sized, thermostable synthetic virus-like particle that offers 60 high-affinity binding sites to rapidly eliminate venom toxins from the blood stream. Further, we will for the first time deploy ADDobody, a small, stable protein motif with randomized flexible loops that will be utilized as a naïve library to select and evolve high-affinity binders in vitro by Ribosome Display. Of note, the ADDobody and ADDomer ‘superbinder’ formats are interconvertible. The ADDovenom project brings to bear cutting-edge proteomics, transcriptomics and bioinformatics to inventorise the toxin repertoire of eight snakes that inflict the most clinically-challenging envenoming syndromes in sub-Saharan Africa: haemorrhage, coagulopathy, paralysis and tissue necrosis. We will implement rational design and high-throughput expression to produce antigens for our selections, based on the major toxin groups we target. We will design consensus-toxins and epitope strings combining conserved sequences, to achieve maximal intergeneric efficacy of our ADDobody binders, boosting neutralizing efficacy for entire toxin families simultaneously. We will develop state-of-the-art bioprocessing to manufacture ADDomer-based antivenoms at pharma scale, preparing for future clinical trials. To achieve these ambitious goals, ADDovenom synergistically combines unique expertise across a range of techniques and scientific disciplines, towards the objective to develop easy to produce, first-in-class neutralizing superbinders for snakebite therapy, to protect with unprecedented efficacy against the most prevalent snakebites – a strategy that can be adapted to all snakes in any geographic region.

Innnovation Radar's analysis of this innovation is based on data collected on 22/11/2021.
The unique id of this innovation in the European Commission's IT systems is: 103947