Discover great EU-funded Innovations
Excellent Science INNOVATION
Software-defined adaptive metasurfaces
SHARE:
Market Maturity: Exploring
These are innovations that are actively exploring value creation opportunities. Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as addressing the needs of existing markets and existing customers. Learn more
Women-led innovation
A woman had a leadership role in developing this innovation in at least one of the Key Innovator organisations listed below.
Go to Market needs
Needs that, if addressed, can increase the chances this innovation gets to (or closer to) the market incude:
  • Prepare for Market entry
  • Scale-up market opportunities
Location of Key Innovators developing this innovation
Key Innovators
UN Sustainable Development Goals(SDG)
This innovation contributes to the following SDG(s)
SUSTAINABLE DEVELOPMENT GOAL 9
Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation

The UN explains: "Investments in infrastructure – transport, irrigation, energy and information and communication technology – are crucial to achieving sustainable development and empowering communities in many countries. It has long been recognized that growth in productivity and incomes, and improvements in health and education outcomes require investment in infrastructure."

The EU-funded Research Project
This innovation was developed under the Horizon 2020 project VISORSURF with an end date of 31/12/2020
  • Read more about this project on CORDIS
Description of Project VISORSURF
Metasurfaces, thin film planar, artificial structures, have recently enabled the realization of novel electromagnetic (EM) and optical components with engineered functionalities. These include total EM radiation absorption, filtering and steering of light and sound, as well as nano-antennas for sensors and implantable devices. Nonetheless, metasurfaces are presently non-adaptive and non-reusable, restricting their applicability to a single, static functionality per structure (e.g., steering light towards a fixed direction). Moreover, designing a metasurface remains a task for specialized researchers, limiting their accessibility from the broad engineering field. VISORSURF proposes a hardware platform-the HyperSurface-that can host metasurface functionalities described in software. The HyperSurface essentially merges existing metasurfaces with nanonetworks, acting as a reconfigurable metasurface whose properties can be changed via a software interface. This control is achieved by a network of miniaturized controllers, incorporated into the structure of the metasurface. The controllers receive programmatic directives and perform simple alterations on the metasurface structure, adjusting its EM behavior. The required end-functionality is described in well-defined, reusable software modules, adding the potential for hosting multiple functionalities concurrently and adaptively. VISORSURF will study in depth the novel and unexplored theoretical capabilities of the HyperSurface concept. Two experimental prototypes will be implemented: a switch-based fabric array as the control medium; and a Graphene based, making use of its exquisite properties to provide finer control. A real pilot-application will demonstrate the HyperSurface potential to adapt to changes in their environment, to interconnect to smart control loops and make use of Information Technology (IT) programming concepts and algorithms in crafting the EM behavior of materials.

Innnovation Radar's analysis of this innovation is based on data collected on 11/02/2021.
The unique id of this innovation in the European Commission's IT systems is: 13082