Discover great EU-funded Innovations
Excellent Science INNOVATION
Non-contact method RF component characterization method up to 3 THz
Market Maturity: Business Ready
These are innovations that are putting concrete market-oriented ideas together and are, for example, pursuing market studies, business plans, engagements with relevant partner and end-users. Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as addressing the needs of existing markets and existing customers. Learn more
Go to Market needs
Needs that, if addressed, can increase the chances this innovation gets to (or closer to) the market incude:
  • Scale-up market opportunities
Location of Key Innovators developing this innovation
Key Innovators
UN Sustainable Development Goals(SDG)
This innovation contributes to the following SDG(s)
Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation

The UN explains: "Investments in infrastructure – transport, irrigation, energy and information and communication technology – are crucial to achieving sustainable development and empowering communities in many countries. It has long been recognized that growth in productivity and incomes, and improvements in health and education outcomes require investment in infrastructure."

The EU-funded Research Project
This innovation was developed under the Horizon 2020 project TERAmeasure with an end date of 30/04/2023
  • Read more about this project on CORDIS
Description of Project TERAmeasure
TERAmeasure proposes a universal, broadband and contact-free measurement and sensing platform, developing compact and competitive transceiver heads for the millimetre- (MMW, 30 GHz-300 GHz) and Terahertz- (THz, 300 GHz-3 THz) frequency range, enabling a new instrumentation and metrology paradigm. This breakthrough will be achieved exploiting photonic integration technology and silicon micromachining to realize a broadband continuous-wave THz platform equipped with refractive index engineered dielectric waveguides. Our main objective is to develop generic and low-cost probing solutions to fully unlock the potential of non-contact, broadband, and phase-sensitive measurements. We aim to stimulate novel fields of research in high frequency device characterization with Vector Network Analyzers (VNAs), field resolved near-field microscopy and industrial non-destructive evaluation. TERAmeasure replaces costly frequency-extension modules, relying on rectangular waveguide flanges, by a photonic approach that covers the full spectrum from 30 GHz up to 3 THz. Thereby, TERAmeasure helps to unify the MMW and THz spectrum, which is currently segmented into more than 10 separate bands. TERAmeasure challenges the established pathway that high frequencies can be addressed only by further miniaturization of the components, which will run into fundamental physical limits. The consortium combines key expertise. UC3M and HHI to develop the new on-chip emitter and receiver for THz signal generation and phase-sensitive detection. KTH to develop novel terahertz waveguide and lensing structures. ANRITSU, who has developed today’s coaxial cable standards, adds its expertise on VNA measurements and VNA systems in which the heads will be integrated and tested. PROTEMICS, an SME, brings non-destructive testing applications for which TERAmeasure will provide a technological market advantage unlocking continuous-wave THz probing. A wider range of applications will be pursued, with a proof-of-concept on early detection of skin cancer with Advisory Board support.

Innnovation Radar's analysis of this innovation is based on data collected on 22/12/2020.
The unique id of this innovation in the European Commission's IT systems is: 20434