Discover great EU-funded Innovations
Excellent Science INNOVATION
Easy to recycle electric Interior permanent magnet synchronous motor
SHARE:
Market Maturity: Market Ready
These are innovations that are outperforming in innovation management and innovation readiness, and are considered to be "Ready for the market". Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as addressing the needs of existing markets and existing customers. Learn more
Location of Key Innovators developing this innovation
Key Innovators
UN Sustainable Development Goals(SDG)
This innovation contributes to the following SDG(s)
SUSTAINABLE DEVELOPMENT GOAL 12
Ensure sustainable consumption and production patterns

The UN explains: "Sustainable consumption and production is about promoting resource and energy efficiency, sustainable infrastructure, and providing access to basic services, green and decent jobs and a better quality of life for all. Its implementation helps to achieve overall development plans, reduce future economic, environmental and social costs, strengthen economic competitiveness and reduce poverty.

The EU-funded Research Project
This innovation was developed under the Horizon 2020 project DEMETER with an end date of 31/08/2019
  • Read more about this project on CORDIS
Description of Project DEMETER
Hybrid and Full Electric Vehicles ((H)EVs) are essential for the transition towards sustainable e-mobility. The permanent magnets in motors/generators of (H)EVs are either NdFeB or SmCo magnets, which contain large quantities of rare earths, which are critical metals with the highest supply risk for Europe. As highlighted by the European Rare Earths Competency Network, recycling of rare-earth magnets from (H)EVs should receive top priority. Reclaiming of rare-earth magnet motors/generators used in (H)EVs is a major challenge because the magnets are difficult to remove from the assemblies. The conventional hydrometallurgical routes for the recovery of rare earths from End-of-Life permanent magnets have a high environmental impact due to inefficient use of chemicals, whereas the conventional pyrometallurgical routes for the production of magnet master alloys are energy-inefficient. DEMETER, the European Training Network for the Design and Recycling of Rare-Earth Permanent Magnet Motors and Generators in Hybrid and Full Electric Vehicles, concurrently develops (1) innovative, environmentally-friendly direct and indirect recycling strategies for the permanent magnets in the motors and generators of (H)EVs that are currently already on the market and (2) design-for-reuse solutions for motors and generators in the (H)EVs of the future. An intersectoral and interdisciplinary consortium of leading EU universities, research institutes and manufacturers from the automotive and magnet sector trains 15 Early Stage Researchers (ESRs). The research challenges include the development of hydrogen-based grain-refinement technologies to produce nanograin magnets directly from scrap magnets, the recovery of rare earths from SmCo and NdFeB magnets of motors/generators by ionometallurgical methods, and the design of motors/generators with reusable magnets, where the designs are based on 2D and 3D flux paths as well as non-traditional materials.

Innnovation Radar's analysis of this innovation is based on data collected on 28/01/2020.
The unique id of this innovation in the European Commission's IT systems is: 19066