Discover great EU-funded Innovations
Smart & Sustainable Society INNOVATION
Innovative integrated solvent extraction process to recover (NH4)3ScF6 from acidic solutions
SHARE:
Market Maturity: Exploring
These are innovations that are actively exploring value creation opportunities. Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as addressing the needs of existing markets and existing customers. Learn more
Location of Key Innovators developing this innovation
Key Innovators
UN Sustainable Development Goals(SDG)
This innovation contributes to the following SDG(s)
SUSTAINABLE DEVELOPMENT GOAL 9
Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation

The UN explains: "Investments in infrastructure – transport, irrigation, energy and information and communication technology – are crucial to achieving sustainable development and empowering communities in many countries. It has long been recognized that growth in productivity and incomes, and improvements in health and education outcomes require investment in infrastructure."

The EU-funded Research Project
This innovation was developed under the Horizon 2020 project SCALE with an end date of 31/05/2021
  • Read more about this project on CORDIS
Description of Project SCALE
Scandium (Sc) is one of the highest valued elements in the periodic table and an element which is usually grouped in REEs as it shares many characteristics with Yttrium. Scandium technological applications are unique, as it is a key component in producing Solid Oxide Fuel Cells (Scandia-Stabilized-Zirconia solid electrolyte layer) or high strength Aluminum alloys used in aerospace and 3D printing applications (SCALMALLOY®). Yet Scandium supply is limited due to its scarcity and the high cost of its production, which currently takes place in Asia and Russia. Europe has no production of Scandium, but is home to many Sc industrial end-users (Airbus, II-VI, KBM Affilips and others). In fact end-users like Airbus, are not deploying their Sc applications due to the lack of a secure Sc supply. The SCALE project sets about to develop and secure a European Sc supply chain through the development of technological innovations which will allow the extraction of Sc from European industrial residues. Bauxite Residues from alumina production (5 Million tons on dry basis per year in Europe) and acid wastes from TiO2 pigment production (1.4 Million tons on dry basis per year in Europe) have Sc concentrations which are considered exploitable, given a viable extraction technology. SCALE develops and demonstrates the value chain starting from residue and finishing to high tech end-product. In more detail: • SCALE develops innovative technologies that can extract economically and sustainably Sc from dilute mediums (<100 mg/L) and upgrade them to pure oxides, metals and alloys at lower energy or material cost. • SCALE extracts along with Sc all other REEs found in the by-products (AoG’s BR on an annual base contain 10% of the European REE raw material imports) The industrially driven SCALE consortium covers the entire Sc value chain with 7 major European industries and further features 8 academic and research institutes and 4 engineering companies with track records in RTD.

Innnovation Radar's analysis of this innovation is based on data collected on 26/12/2019.
The unique id of this innovation in the European Commission's IT systems is: 16898