Discover great EU-funded Innovations
Industrial Technologies INNOVATION
A simulation methodology using Computational Fluid Dynamics (CFD) tools to simulate the rubber injection process at the micro and macro scales.
Market Maturity: Exploring
These are innovations that are actively exploring value creation opportunities. Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as addressing the needs of existing markets and existing customers. Learn more
Women-led innovation
A woman had a leadership role in developing this innovation in at least one of the Key Innovator organisations listed below.
Location of Key Innovators developing this innovation
Key Innovators
Higher Education Institute / Research Centre
UN Sustainable Development Goals(SDG)
This innovation contributes to the following SDG(s)
Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation

The UN explains: "Investments in infrastructure – transport, irrigation, energy and information and communication technology – are crucial to achieving sustainable development and empowering communities in many countries. It has long been recognized that growth in productivity and incomes, and improvements in health and education outcomes require investment in infrastructure."

Ensure sustainable consumption and production patterns

The UN explains: "Sustainable consumption and production is about promoting resource and energy efficiency, sustainable infrastructure, and providing access to basic services, green and decent jobs and a better quality of life for all. Its implementation helps to achieve overall development plans, reduce future economic, environmental and social costs, strengthen economic competitiveness and reduce poverty.

The EU-funded Research Project
This innovation was developed under the Horizon 2020 project MouldTex with an end date of 30/04/2021
Description of Project MouldTex
Polymeric seals are essential components in almost every industrial and mechanical process enabling the effective containment and movement of liquids and gases under extremes of environment. Friction is intrinsically related to seal performance. High friction accelerates wear of the seal leading to leakage and/or premature failure, and increases the energy consumption of industrial processes. Surface (micro-) texturing is a proven technique for reducing friction across lubricated rigid materials such as metal and ceramic materials. Within recent years this technique has been applied and demonstrated for polymeric and elastomeric materials at laboratory level. The project will develop and demonstrate a novel methodology for the design and high volume manufacture of surface textured polymeric components tailored to the (friction) environment within which the component operates, achieving a friction reduction of >20% at a cost premium of <10%. The novel methodology combines: •advanced modelling software for the identification of surface texture patterns that lead to significant friction reduction for target rubber and plastic seals and applications •software for the design of mould tools that enable the reliable transfer of texture patterns onto the seal surface •novel automated laser system for the application of hierarchical laser induced micro- texture patterns to the mould tool surface •best practice for moulding and de-moulding using surface textured moulds •inline optical inspection for surface texture pattern quality control The project will establish three pilot lines for demonstration of: 1) mould tool design and manufacture; and the design and manufacture of 2) rotary seals for engine applications; and 3) reciprocating seals for industrial processes.

Innnovation Radar's analysis of this innovation is based on data collected on 16/07/2019.